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Griffiths Singularity in the Random Ising
Ferromagnet

Victor Dotsenko1,2

Received May 10, 2005; accepted November 7, 2005

The explicit form of the Griffiths singularity in the random ferromagnetic Ising model
in external magnetic field is derived. In terms of the continuous random temperature
Ginzburg-Landau Hamiltonian it is shown that in the paramagnetic phase away from
the critical point the free energy as the function of the external magnetic field h in
the limit h → 0 has the essential singularity of the form exp [−(const)/hD/3] (where
1 < D < 4 is the space dimensionality). It is demonstrated that in terms of the replica
formalism this contribution to the free energy comes due to non-perturbative replica
instanton excitations.
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1. INTRODUCTION

The history of the problem of the Griffiths singularities starts from the theorem
of Lee and Yang (1) which states that the partition function of an (ordered) ferro-
magnetic Ising model (in any space dimensions and for any lattice connectivity)
as the function of the external magnetic field h in the thermodynamic limit has a
continuous distribution of zeros along the imaginary axis of the complex parameter
h = x + iy. Moreover, in the paramagnetic phase depending on the temperature
this distribution starts at finite distance �y from the real axis, which means that
here the free energy of the system is an analytic function of the real magnetic
field h (with y = 0). On the other hand, when the temperature T approaches the
phase transition point Tc from above the value of the interval �y shrinks to zero,
so that the distribution of zeros touches the real axes at T = Tc, which indicates
(in agreement with the modern theory of the critical phenomena) that at the phase
transition point the free energy must be a non-analytic function of (real) h → 0.
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Now, if one would try to apply the above general observations for random
systems, the consequences turn out to be much more tricky. As an example, let us
consider bond diluted ferromagnetic Ising model, in which the critical temperature
Tc(p) is the (decreasing) function of the degree of dilution p. Here one can note
that in an infinite system at a temperature T which is above Tc(p) (such that the
state of the system is paramagnetic) but below the critical temperature T0 of the
corresponding pure system, with a finite (exponentially small) probability there
are exist arbitrary large less diluted ferromagnetic “islands” which are critical
exactly at this given temperature T . It is important that such clusters exist at any
temperature in the interval Tc(p) < T < T0. Thus one can expect that the free
energy of such random system must be a non-analytic function of the external
magnetic field h → 0 at any temperature between Tc(p) and T0

(2). Unlike pure
systems, however, here it is much more difficult to predict the explicit form of
such non-analyticity.

For the one-dimensional diluted Ising chain it has been shown that its free
energy F(T, h) is non-analytic in the point T = 0, h = 0, and moreover the diver-
gences of the pure system thermodynamics are replaced by an essential singularity
at which all functions are finite and infinitely differentiable (3). According to fur-
ther more general studies (in terms of heuristic arguments (4,5) and the Bethe
lattice systems (4)), the form of this singularity has been argued be of the type
exp [−(const)/h].

At the same time there has been much interest in the dynamical properties of
such systems in the temperature interval Tc(p) < T < T0. It has been discovered
that the relaxation processes here are slower than the exponential (6). It turned out
that due to the presence of rare large ferromagnetic clusters the relaxation of e.g. the
order parameter takes either “stretched-exponential” form exp [−(t/τ )β(T )] con-
trolled by the temperature dependent exponent β < 1 (the result preferred by the
numerical simulations (7)), or even slower type of decay exp [−(const)(lnt)D/(D−1)]
(predicted analytically (6,8)). Due to these quite non-trivial dynamical properties,
which are essentially different from the paramagnetic phase, the state of the system
in this temperature interval is usually called the Griffiths phase.

Besides dynamics, an essential progress has been achieved in the analytical in-
vestigation of the distribution of zeros of the partition function alone the imaginary
axis of the complex magnetic field. In particular, formal replica supersymmetric
calculations performed for the random temperature Ginzburg-Landau Hamilto-
nian (9) has demonstrated the importance of the instanton-like non-perturbative
excitations which provide the development of the “tail” in the distribution of ze-
ros in analogy with the density of states in the Anderson localization problem.
On the other hand, the study of the diluted infinite-range Ising ferromagnet with
finite connectivity in purely imaginary magnetic field h = iy has shown that in
the paramagnetic phase the tail of the density of zeros ρ(y) has the explicit form
of the type ρ(y) ∼ exp [− f (T )/y], where the function of the temperature f (T )
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vanishes in the critical point (10). Similar tail has been also found numerically in
the two-dimensional diluted Ising model (11). All that, however, doesn’t answer
the main question, what is the explicit form of the Griffiths singularities of the
thermodynamical quantities as the function of the real magnetic field in the point
h = 0.

In this paper I am going to consider this problem in terms of the D-
dimensional random temperature Ginzburg-Landau Hamiltonian (in dimensions
1 < D < 4) in the paramagnetic phase away from the critical point. In the next
section simple heuristic arguments will be proposed which demonstrate on a qual-
itative level the physical mechanism by which non-analytic contributions appear
in the thermodynamical functions of such type of systems. After that, the system-
atic method of non-perturbative replica calculations will be formulated in Section
III. Finally, in Section IV it will be demonstrated that non-analytic (Griffiths)
contributions to the thermodynamics comes from non-perturbative instanton-like
excitations. In the limit h → 0 such contributions to the free energy is argued to
have the explicit form

�F ∼ exp [−C h−D/3] (1)

where the constant C is defined by the parameters of the Ginzburg-Landau
Hamiltonian and by the strength of the disorder.

2. HEURISTIC ARGUMENTS

Before starting doing systematic calculations let us try to understand on a
pure qualitative level, using simple “hand-waving-arguments,” what is the physical
mechanism by which non-analytic contributions are coming into the free energy
(and others thermodynamical functions) in the paramagnetic phase of weakly
disordered ferromagnetic Ising model in external magnetic field. Let us suppose
that such system in D dimensions can be described by the continuous Ginzburg-
Landau Hamiltonian

H =
∫

d D x

[
1

2
(∇φ(x))2 + 1

2
(τ − δτ (x)) φ2(x) + 1

4
gφ4(x) − hφ(x)

]
(2)

Here, to ensure the existence of the ferromagnetic phase transition, the dimen-
sionality D is assumed to be greater than one. Besides, the reduced temperature
parameter τ is taken to be positive and sufficiently large to place the system into
the paramagnetic phase. The disorder is modeled by a random function δτ (x)
which is described by the Gaussian distribution,

P[δτ ] = p0 exp

(
− 1

4u

∫
d D x(δτ (x))2

)
, (3)
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where u is the small parameter which describes the strength of the disorder, and
p0 is the normalization constant.

Intuitively, it is clear that non-trivial contributions to the thermodynamics
are coming due to rare “ferromagnetic islands” in which the value of δτ (x) is on
average bigger than τ . Let us consider such an island, which is characterized by the
linear size L and the typical value of the “local temperature” (τ − δτ ) = −ξ < 0
Its probability is exponentially small,

P [L , ξ ] ∼ exp

(
− (τ + ξ )2

4u
L D

)
, (4)

and therefore such islands are well separated from each other and can be considered
as non-interacting. Note that the physical mechanism of slowing down of the
relaxational processes due to the presence of these ferromagnetic islands are more
or less clear. The magnetization orientation of the ferromagnetic cluster can be
either “up” or “down,” and if its size L is big, then it would require a long
“elementary relaxation time” t(L) to flip it from one orientation to the other (since
flipping of the cluster would require overcoming a big energy barrier, which is
proportional to L D−1). The origin of the non-analytic contributions appearing
in terms of pure statistical mechanics is much less clear: since time is formally
infinite here, the presence of big energy barriers, separating the two orientations
is irrelevant.

First, let us consider what is going on in the zero external magnetic field.
Here one could distinguish two types of contributions to the thermodynamics:

(1) the perturbative one, coming from the spatial scales smaller than the cor-
relation length Rc, which formally could be computed e.g. in terms of the
renormalization-group (RG) approach (12);

(2) the non-perturbative contributions (missing in the RG treatment) due to
the “up” and “down” ferromagnetic states of rare ferromagnetic islands
discussed above, which are coming from the spatial scales bigger than the
correlation length Rc.

It has to be noted that the island with small (negative) local temperature −ξ

can be characterized as having the distinct (mean-field) “up” and “down” states
only if its size is much bigger than its local correlation length Rc(ξ ) ∼ ξ−1/2 In
what follows we are going to use the mean-field values of the critical exponents
assuming that the temperature of the system is taken sufficiently far away from
the critical region near Tc (the size of this region is of the order of τg = g2/(4−D)

which is small if the coupling parameter g is taken to be small).
According to eq. (2), the energy of a large ferromagnetic island is propor-

tional to −(ξ 2/g)L D . Since, according to eq. (4), the density of such islands is
exponentially small, they can be considered as well separated and non-interacting
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with each other. Thus, their (averaged) contribution to the density of the free
energy can be estimated as follows:

FG ∼
∫ ∞

0
dξ

∫ ∞

Rc(ξ )
d L

(
ξ 2

g
L D

)
P [L , ξ ]

∼ 1

g

∫ ∞

0
dξ ξ 2

∫ ∞

Rc(ξ )
d L L D exp

[
− 1

4u
(τ + ξ )2 L D

]

∼ 1

g

∫ ∞

0
dξ ξ 2−D/2 exp

[
−(const)

(τ + ξ )2

u
ξ−D/2

]
(5)

Here in the integration over ξ (with the exponential accuracy) the leading contri-
bution comes from the vicinity of the saddle-point value

ξ∗ = D

4 − D
τ (6)

(which is positive in dimensions D < 4, and ξ∗ � τg provided τ � τg). In this
way, with the exponential accuracy we obtain the following estimate for the non-
perturbative contribution coming from rare ferromagnetic islands:

FG ∼ exp

[
−(const)

τ (4−D)/2

u

]
(7)

In fact, this result (including the value of the (const) factor), as we will see in
section IV, can be derived analytically in terms of the formal replica calculations
as the contribution from the localized (instanton-like) solutions of the mean-field
saddle-point equations (13).

In the presence of non-zero external magnetic field h the situation becomes
slightly more tricky. Let us consider again the ferromagnetic island of the size
L with negative “local temperature” (τ − δτ ) = −ξ which is described by the
Hamiltonian, eq. (2). Note first of all, that the effective potential

U (φ) = −1

2
ξφ2 + 1

4
gφ4 − hφ (8)

has two minima only if the value of ξ is not too small, namely at

ξ > ξ∗(h) ∼ h2/3g1/3, (9)

otherwise, at ξ < ξ∗(h), it has a unique minimum (see Fig.1). In the case of the
two minima, the state “up” (φ > 0) has the lower energy Eu(ξ, h, L), and it is
the ground state of the island, while the state “down” (φ < 0) can be considered
as the excitation since it has higher energy, Ed (ξ, h, L). The crucial point is that
the excited state, Ed disappears discontinuously at ξ = ξ∗(h) such that the energy
difference �E = Ed − Eu remains finite at this critical value of ξ .
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Fig. 1. Qualitative shape of the potential U (φ), eq. (8)): (a) at ξ � ξ∗(h); (b) at ξ > ξ∗(h); (c) at
ξ = ξ∗(h).

Thus, the contribution to the total free energy of such ferromagnetic islands
can be estimated as follows:

FG(h) ∼ −
∫ ∞

ξ∗(h)
dξ

∫ ∞

Rc(ξ )
d L P [L , ξ ] ln [e−Eu + e−Ed ]

−
∫ ξ∗(h)

0
dξ

∫ ∞

Rc(ξ )
d L P [L , ξ ] ln [e−Eu ] (10)

where P[L , ξ ] is the probability to have the island of the size L with the local
temperature ξ , eq. (4). Since the integration over L sticks to the lower bound Rc,
we find:

FG(h) ∼
∫ ∞

0
dξ P(ξ ) Eu(ξ, h) −

∫ ∞

ξ∗(h)
dξ P(ξ ) ln [1 + e−�E(ξ,h)] (11)

where

P(ξ ) ∼ exp

[
−(const)

(τ + ξ )2

u
ξ−D/2

]
(12)

On the other hand, similar considerations for the zero field case (when Ed = Eu)
yield

FG(0) ∼ −
∫ ∞

0
dξ

∫ ∞

Rc(ξ )
d L P [L , ξ ] ln

[
2e−Eu (ξ,0)

]

∼
∫ ∞

0
dξ P(ξ ) [Eu(ξ, 0) − (ln2)] (13)

Thus, for the free energy difference, �FG(h) = FG(h) − FG(0) we find:

�F(h) ∼
∫ ∞

0
dξ P(ξ ) [Eu(ξ, h) − Eu(ξ, 0)]

−
∫ ∞

ξ∗(h)
dξ P(ξ ) ln

[
1 + e−�E(ξ,h)

2

]
+ (ln2)

∫ ξ∗(h)

0
dξ P(ξ ) (14)



Griffiths Singularity in the Random Ising Ferromagnet 203

In the limit h → 0 the first two terms in the above equation provide regular
functions of h (both (Eu(ξ, h) − Eu(ξ, 0)) and �E(ξ, h) go to zero as a power
functions of h in the limit h → 0), while the last one is just the non-trivial Griffiths
contribution δFG(h) which has the form of the essential singularity:

δFG(h) ∼ (ln2)
∫ ξ∗(h)

0
dξ P(ξ ) ∼ exp

(
−(const)

τ 2

u
ξ−D/2
∗ (h)

)
(15)

Substituting here the value ξ∗(h) = h2/3g1/3, eq. (9), one eventually finds:

δFG(h) ∼ exp

(
−(const)

τ 2

u gD/6
h−D/3

)
(16)

In Section IV it will be demonstrated how this result can be derived in terms of
the formal replica calculations. But first we have to formulate the general lines of
the replica approach for the non-perturbative contributions.

3. NON-PERTURBATIVE REPLICA CALCULATIONS

In this section I am going to formulate a general systematic approach for the
calculations of non-perturbative contributions (if any) coming from local minima
states, which in the configurational space are well separated from the ground state.

Let us consider a general random system described by a Hamiltonian
H [φ(x)], and let us suppose that in addition to the ground state, there is an-
other thermodynamically relevant (Griffith) region of the configurational space
located “far away” from the ground state and separated from it by a finite barrier
of the free energy (see Fig.2). In other words, we suppose that the partition function
(of a given sample) can be represented in the form of two separate contributions:

Z =
∫

Dφ(x)e−β H = e−βF0 + e−βF1 ≡ Z0 + Z1 (17)

where F0 is the contribution coming from the vicinity of the ground state, and F1

is the contribution of the Griffiths region. Then, for the averaged over disorder
total free energy we find:

F = − 1

β
lnZ = F0 − 1

β
ln [1 + Z1 Z−1

0 ] (18)

The second term here, which is just the Griffiths contribution, can be represented
as follows:

FG = − 1

β

∞∑
m=1

(−1)m−1

m
Zm

1 Z−m
0 = − 1

β
lim
n→0

∞∑
m=1

(−1)m−1

m
Zn(m) (19)

where

Zn(m) =
m∏

b=1

∫
Dφ

(1)
b

n−m∏
c=1

∫
Dφ(0)

c e−β Hn [φ(1)
1 ,...,φ

(1)
m ,φ

(0)
1 ,...,φ

(0)
n−m ] (20)
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Fig. 2. Schematic structure of the free energy landscape in the case of two well separated thermody-
namically relevant valleys of the configurational space

is the replica partition function (Hn [φ] is the corresponding replica Hamiltonian),
in which the replica symmetry in the n-component vector field φa (a = 1, ..., n)
is assumed to be broken. Namely, it is supposed that the saddle-point equations

δHn [φ]

δφa(x)
= 0 , (a = 1, ..., n) (21)

have non-trivial solutions with the RSB structure

φ∗
a (x) =




φ1(x) for a = 1, ..., m

φ0(x) for a = m + 1, ..., n
(22)

with φ1(x) 	= φ0(x), so that the integration in the above partition function, eq. (20),
goes over fluctuations in the vicinity of these solutions:

φ
(1)
b (x) = φ1(x) + ϕb(x), (b = 1, ..., m)

φ(0)
c (x) = φ0(x) + χc(x), (c = 1, ..., n − m) (23)

It should be stressed that to be thermodynamically relevant, the RSB saddle-point
solutions, eq. (22), should satisfy the following three crucial conditions:

(1) the solutions should be local in space, so that they are characterized by
finite space sizes R(m); in this case the partition function, eq. (20), will be
proportional to the entropy factor V/RD(m) (where V is the volume of the
system), and the corresponding free energy contribution FG , eq. (19), will
be extensive quantity;
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(2) they should have finite energies E(m) = Hn [φ∗];
(3) the corresponding Hessian matrix of these solutions should have all eigen-

values positive.

Thus, in the systematic calculations one should find all saddle-point RSB
solutions φ∗

a (x) (satisfying the above three requirements), eq. (22), after that one
has to compute their energies E(m) (for n → 0), next one has to integrate over
the fluctuations in the vicinity of these solutions, and finally one has to sum up the
series

FG = − V

β

∞∑
m=1

(−1)m−1

m
R−D(m) (det T̂ )−1/2

n=0 e−βE(m) (24)

where T̂ is the (n × n) matrix

Taa′ = δ2 H [φ]

δφaδφa′

∣∣∣
φ=φ∗

(25)

The above scheme of calculations can be easily generalized for an arbitrary
number of the Griffiths regions.

For example, let us consider the situation which is qualitatively represented in
Fig.3, when in addition to the ground state, the system has two thermodynamically
relevant Griffiths states (which is just the case for the considered random Ising

Fig. 3. Schematic structure of the free energy landscape in the case of three well separated thermody-
namically relevant valleys of the configurational space
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model). In this case instead of eq. (17) we will have

Z =
∫

Dφ(x)e−β H = e−βF0 + e−βF1 + e−βF2 ≡ Z0 + Z1 + Z2 (26)

and correspondingly, instead of eq. (19) we find

FG = − 1

β
ln [1 + Z1 Z−1

0 + Z2 Z−1
0 ]

= − 1

β

∞∑
m=1

(−1)m−1

m

m∑
k=0

Cm
k

(
Zk

1 Zm−k
2 Z−m

0

)

= − 1

β
lim
n→0

∞∑
m=1

(−1)m−1

m

m∑
k=0

Cm
k Zn(k, m) (27)

where Cm
k = m!/(k!(m − k)!) is the combinatoric factor. Here, in the replica par-

tition function

Zn(k, m) =
k∏

b=1

∫
Dφ

(1)
b

m−k∏
c=1

∫
Dφ(2)

c

n−m∏
d=1

∫
Dφ(0) e−β Hn

[
φ(1),φ(2),φ(0)

]
(28)

the integration is supposed to be performed in the vicinity of the saddle-point
replica vector

φ∗
a (x) =




φ1(x), for a = 1, ..., k
φ2(x), for a = k + 1, ..., m
φ0(x), for a = m + 1, ..., n

(29)

(where φ1(x) 	= φ2(x) 	= φ0(x)) which is the solution of the saddle-point equations
(21). Finally, for the Griffiths contribution, instead of eq. (24) one obtain

FG = −V
∞∑

m=1

(−1)m−1

βm

m∑
k=0

Cm
k R−D(det T̂ )−1/2

n=0 e−βE(k,m) (30)

where E(k, m) = Hn→0 [φ∗] is the energy of a given saddle-point solution, eq.
(29), and T̂ is the Hessian matrix, eq. (25).

It is worth noting that one can arrive to the same representations for the
non-perturbative free energy contributions, eqs.(24) and (30), in terms of the so
called vector replica symmetry breaking scheme (14,15), starting from the standard
replica approach for random systems (F = −β−1 limn→0(Zn − 1)/n)

In the next section we will implement the programme described above for
the concrete case of weakly disordered ferromagnetic Ising model in the high
temperature paramagnetic phase.
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4. REPLICA INSTANTONS

After the standard Gaussian averaging over random δτ (x) (described by the
distribution, eq. (3)) of the n-th power of the partition function one obtains the
following replica Hamiltonian

Hn [φ] =
∫

d D x

[
1

2

n∑
a=1

(∇φa)2 + 1

2
τ

n∑
a=1

φ2
a

+1

4
g

n∑
a=1

φ4
a − 1

4
u

n∑
a,b=1

φ2
aφ

2
b − h

n∑
a=1

φa

]
(31)

The corresponding saddle-point equations are

−�φa(x) + τφa(x) + gφ3
a (x) − uφa(x)

(
n∑

b=1

φ2
b(x)

)
= h (32)

Substituting here the ansatz, eq. (29), the above saddle-point equations are reduced
to

−�φi + τφi + gφ3
i − uφi S = h (33)

(i = 1, 2, 0) where

S ≡
n∑

a=1

φ2
a (x) = kφ2

1 + (m − k)φ2
2 + (n − m)φ2

0 (34)

which in the limit n → 0 turns into

S = kφ2
1 + (m − k)φ2

2 − mφ2
0 (35)

Substituting the ansatz, eq. (29), into the Hamiltonian, eq. (31), for the energy of
this configuration (in the limit n → 0) we obtain:

E(k, m) =
∫

d D x

[
k

2
(∇φ1)2 + (m − k)

2
(∇φ2)2 − m

2
(∇φ0)2 + U (φ1, φ2, φ0)

]
(36)

where

U (φ1, φ2, φ0) = 1

2
τ [kφ2

1 + (m − k)φ2
2 − mφ2

0] + 1

4
g [kφ4

1 + (m − k)φ4
2 − mφ4

0]

−1

4
u [kφ2

1 + (m − k)φ2
2 − mφ2

0]2 − h [kφ1 + (m − k)φ2 − mφ0] (37)

and the functions φ1(x), φ2(x) and φ0(x) are defined by the equations (33) and
(35).
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4.1. Zero External Magnetic Field

First of all, we note in the case h = 0, due to the symmetry φ → −φ the
solution of eqs.(33)–(35) takes the form:

φ1(x) = −φ2(x) ≡ φ(x)

φ0(x) = 0 (38)

where the function φ(x) is defined by the equation

−�φ(x) + τφ(x) − λ(m)φ(x)3 = 0 (39)

which is controlled by the parameter

λ(m) = um − g (40)

In what follows this parameter will be assumed to be positive. In other words, the
solution, which we are going to derived below, exists only for m such that

m >
[g

u

]
(41)

Substituting eqs.(38) into eq. (36)–(37) for the energy of this solution we obtain

E(k, m) ≡ E(m) = m

∫
d D x

[
1

2
(∇φ)2 + 1

2
τφ2 − 1

4
λ(m)φ4

]
(42)

Note here, that one should not be confused by the “wrong” sign of the φ4 term in
the above expression (which for the usual field theory would indicate its absolute
instability). In fact, as we will see below, the integration over the replica fluctuations
around considered solution in the limit n → 0 yields the Hessian matrix which has
all the eigenvalues positive (this is quite standard situation for the replica theory:
in the limit n → 0, when the number of certain parameters become negative,
everything turns “upside down,” so that minima of the physical quantities turns
into maxima of the corresponding replica quantities (15,16)).

Rescaling the fields,

φ(x) =
√

τ

λ(m)
ψ(x/Rc(τ )) (43)

(where Rc(τ ) = τ−1/2), instead of eq. (39) one get the differential equation which
contains no parameters:

−�ψ(z) + ψ(z) − ψ3(z) = 0 (44)

Correspondingly, for the energy, eq. (42), one obtains:

E(m) = m

um − g
τ (4−D)/2 E0 (45)
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where

E0 =
∫

d Dz

[
1

2
(∇ψ(z))2 + 1

2
ψ2(z) − 1

4
ψ4(z)

]
(46)

The equation (44) is well know in the field theory (see e.g. (17)): in dimensions
1 < D < 4 it has the smooth (with ψ ′(0) = 0) spherically symmetric instanton-
like solution such that:

ψ(z ≤ 1) ∼ ψ(0) ∼ 1,

ψ(z � 1) ∼ e−z → 0. (47)

The energy E0, eq. (46), of this solutions is a finite and positive number. In partic-
ular, at D = 3, ψ0 � 4.34 and E0 � 18.90. Note that according to the rescaling,
eq. (43), the size of the instanton solution in terms of the original fields φ(x) is
Rc = τ−1/2. This size does not depends on k and m, and it coincides with the usual
mean-field correlation length of the Ginsburg-Landau theory. Note also that due
to the symmetry φ → −φ of the considered solution its parameters do not depend
on k. Thus, we can perform the summation over k in the series, eq. (30), which
yields the trivial factor 2m :

FG � −V Rc(τ )−D
∞∑

m>[g/u]

(−1)m−1

m
2m(det T̂ )−1/2

n=0

× exp

(
−E0

m

um − g
τ (4−D)/2

)
(48)

In other words, the considered two-step structure, eq. (29)–(30), is equivalent to
the one-step ansatz, eq. (22),

φ∗
a (x) =

{√
τ

λ(m)ψ(x
√

τ ) for a = 1, ..., m

0 for a = m + 1, ..., n
(49)

which has additional degeneracy factor 2m .
The final step is the integration over fluctuations which define the Hessian

factor (det T̂ ). Introducing small fluctuations ϕa(x) near the above instanton solu-
tion, φa(x) = φ∗

a (x) + ϕa(x), in the Gaussian approximation we get the following
Hamiltonian for the fluctuating fields:

H [ϕ] �
∫

d D x


1

2

n∑
a=1

(∇ϕa)2 + 1

2
τ

n∑
a,a′=1

Kaa′ (x)ϕaϕa′


 (50)

where the matrix Kaa′(x) contains the m × m block:

K (m)
bb′ (x) =

(
1 − um − 3g

um − g
ψ2(x

√
τ )

)
δbb′ − 2u

um − g
ψ2(x

√
τ ) (51)
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(b, b′ = 1, ..., m) and the diagonal elements for the remaining (n − m) replicas:

K (n−m)
cc′ =

(
1 − um

um − g
ψ2(x

√
τ )

)
δcc′ (52)

(c, c′ = m + 1, ..., n). To obtain the explicit result for the Hessian, let us approxi-
mate the instanton solution, eq. (47), by the θ -like function

ψ(z) =
{

ψ0, for 0 ≤ z ≤ 1

0, for z > 1
(53)

Then, the approximate Hamiltonian for the fluctuating fields takes much more
simple form

H [ϕ] � 1

2

n∑
a,a′=1

∫
|p|�√

τ

d D p

(2π )D
[p2δaa′ + τ Kaa′ ]ϕa(p)ϕa′(−p)

+1

2

n∑
a=1

∫
|p|�√

τ

d D p

(2π )D
p2|ϕa(p)|2 (54)

Here the p-independent matrix Kaa′ is given by eqs. (51)–(52), where instead of
the function ψ(x

√
τ ) one has to substitute the constant ψo.

The integration over the modes with momenta p � √
τ (corresponding to

the scales much bigger than the size of the instanton), which are described by
the second term of the above Hamiltonian, gives the contribution of the form
exp(−nV fRS). This contribution is irrelevant in the limit n → 0, which is quite
natural, because all such contributions must be already contained in the perturba-
tive part of the free energy F0, eq. (18), which we do not consider here.

The integration over the modes with momenta p � √
τ is slightly cumber-

some but straightforward:

(det T̂ )−1/2 � exp

[
−τ−D/2

2

∫
p�√

τ

d D p

(2π )D
Tr ln

(
p2δaa′ + τ Kaa′

)]
(55)

The matrix under the logarithm in the above equation contains (m − 1) eigenvalues:

λ1 = p2 + τ

(
1 − um − 3g

um − g
ψ2

o

)
(56)

one eigenvalue:

λ2 = p2 + τ

(
1 − um − 3g

um − g
ψ2

o

)
− τ

2um

um − g
ψ2

o (57)

and (n − m) eigenvalues:

λ3 = p2 + τ

(
1 − um

um − g
ψ2

o

)
(58)
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which are all positive. Substituting these eigenvalues into eq. (55), after simple
algebra in the limit n → 0 one eventually obtains the following result:

(det T̂ )−1/2 � exp

[
3m

2(um − g)
gψ2

o

]
(59)

Finally, substituting this value into eq. (48) we find

FG � −V Rc(τ )−D
∞∑

m>[g/u]

(−1)m−1

m
2m

× exp

[
−E0

m

um − g
τ (4−D)/2 + 3m

2(um − g)
gψ2

o

]
(60)

Here one can note that under condition

τ � τg = g2/(4−D) (61)

the second term in the exponential of eq. (60) (which is the fluctuations contribu-
tion) can be neglected compared to the first one. This is not surprising because eq.
(61) is nothing else, but the familiar Ginzburg-Landau condition which defines
the temperature region away from Tc, where the critical fluctuations are irrelevant,
and the behavior of the system is described by the mean-field exponents.

The exact summation of the series in eq. (60) is rather tricky problem, but
with the exponential accuracy it can be estimated in a very simple way. One can
easily see that in the limit of weak disorder, at u � g, the leading contribution
in this summation comes from the region m � g/u � 1 (where the exponential
factor in eq. (60) becomes m-independent) and this contribution is

FG ∼ exp

(
−E0

τ (4−D)/2

u

)
(62)

We see that this result nicely coincides with the naive “hand-waving” estimate,
eq. (7), where the (const) factor is the instanton energy E0 (in three dimensions
E0 � 18.9).

4.2. Non-zero External Magnetic Field

Technically, the situation in non-zero magnetic field becomes much more
cumbersome, but on a qualitative level, the main idea of the approach remains
very simple. According to the physical discussion of Section II, non-analytic con-
tribution to the free energy in the presence of external magnetic field appears due
to the fact, that some of the instanton-like configurations (of the type, considered
in the previous subsection) disappear via a finite jump.

To understand that, let us consider first the structure of the potential energy
U (φ1, φ2, φ0), eq. (37). The extrema of this potential are defined by the three
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equations

τφi + gφ3
i − uφi S = h (63)

(i = 1, 2, 0), where

S = kφ2
1 + (m − k)φ2

2 − mφ2
0 (64)

Simple algebraic manipulations reduce these equations to

φ1 + φ2 + φ0 = 0 (65)

φ1φ2(φ1 + φ2) = −h

g
(66)

and

τ + [g + u(m − k)]φ2
1 + (g + uk) φ2

2 + (g + 2um) φ1φ2 = 0 (67)

First, treating the magnetic field h here as a small correction to the zero-field
solution,

φ
(h=0)
1 = −φ

(h=0)
2 ≡ φ(m) =

√
τ

um − g

φ
(h=0)
0 = 0 (68)

one easily finds

φ1 � φ(m) + h

gφ2(m)
+ O

(
h2

)
,

φ2 � −φ(m) + O
(
h2

)
,

φ0 � − h

gφ2(m)
+ O

(
h2

)
(69)

It is clear that this linear in h shift of the extremum of the potential U (φ1, φ2, φ3)
provide not more than a linear in h corrections to the zero field instanton space
configuration as well as to its free energy contribution considered in the previous
subsection.

It has to be noted, however, that the above result, eq. (69), is valid only until
the summation parameters k and m are not too large:

m, k � τ

u

(g

h

)2/3
(70)

Simple analysis shows that as k and m grow, the values of (negative) φ2(k, m)
and φ0(k, m) become closer and closer to each other, and finally, one arrive to
the critical configuration when their values coincide. Substituting φ0 = φ2 ≡ φ

(cr )
2
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into equations (65)–(67) one easily finds that

φ
(cr )
2 = −

(
h

2g

)1/3

φ
(cr )
1 = 2

(
h

2g

)1/3

(71)

and this critical configuration (in the limit h → 0) takes place at

kc(h) � τ

3u

(
2g

h

)2/3

(72)

for arbitrary value of m ≥ kc.
At larger values of k the system of equations (65)–(67) have no solutions at

all. The simplest way to understand this, is to consider the eqs.(66) and (67) for k
and m much bigger than kc. In this case eq. (67) would require the values of φ1

and φ2 as the functions of k and m to be of order k−1/2 and m−1/2, tending to zero
as m, k → ∞, while eq. (66) tells that both φ1 and φ2 must remain finite.

Thus, the summations in the instanton free energy contribution, eq. (30), has
to be limited by the finite value kc(h):

FG(h) = −V
kc∑

m=m0

(−1)m−1

m

m∑
k=0

Cm
k

e−E(k,m;h)

RD(det T̂ )1/2
n=0

−V
∞∑

m=kc

(−1)m−1

m

kc∑
k=0

Cm
k

e−E(k,m;h)

RD(det T̂ )1/2
n=0

(73)

(here m0 = [g/u] + 1). This expression has to be compared with the correspond-
ing summation at h = 0, studied in the previous subsection. Although all the terms
in these series are non-analytic functions of the disorder parameter u (see previous
subsection), until k, m � kc(h), the difference between the terms with h 	= 0 and
the corresponding terms with h = 0 can be represented in the form of corrections
in powers of h. On the other hand, as we will see below, the terms with k ∼ kcr (h)
are non-analytic functions of h, and their differences with the corresponding zero-
field contributions (in particular the differences of the instanton energies) can not
be expended in powers of h. It is these terms, which are the contributions of the
critical instantons which yield the non-analytic in h part of the free energy δFG(h).
Rigorous extracting of this piece must be a very difficult problem (it would require
derivation of the instantons energy for arbitrary k, m and h, as well as summa-
tions of the full series in eq. (73)), but with the exponential accuracy the form of
this non-analytic singularity is defined only by the energy E (cr )(h) of the critical
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instanton,

δFG(h) ∼ exp [−E (cr )(h)] (74)

Let us study the instanton configuration and estimate its energy in the vicinity of
its critical state. For that let us rescale the fields,

φi =
(

h

g

)1/3

ψi (x/Rc) (75)

(i = 1, 2, 0) where

Rc = h−1/3g−1/6 (76)

defines the spacial size of the critical instanton. In terms of the rescaled fields ψ ,
the energy of the instanton takes the form

E(k, m) = RD
c h4/3

g1/3

∫
d Dz

[
k

2
(∇ψ1)2 + (m − k)

2
(∇ψ2)2

−m

2
(∇ψ0)2 + +U (ψ1, ψ2, ψ0)

]
(77)

where

U (ψ1, ψ2, ψ0) = 1

2
τ̃ [kψ2

1 + (m − k)ψ2
2 − mψ2

0 ]

+ 1

4
[kψ4

1 + (m − k)ψ4
2 − mψ4

0 ]

− 1

4
ũ [kψ2

1 + (m − k)ψ2
2 − mψ2

0 ]2

− [kψ1 + (m − k)ψ2 − mψ0] (78)

is the potential controlled by two rescaled parameters

τ̃ = τg−1/3h−2/3

ũ = u

g
(79)

The instanton configuration is defined by the three equations,

−�ψi + τ̃ψi + ψ3
i − ũψi S = 1 (80)

(i = 1, 2, 0) where

S = kψ2
1 + (m − k)ψ2

2 − mψ2
0 (81)

Let us consider these equations in the limit h → 0 and and for the values of k
and m of order of kc ∼ h−2/3 → ∞. There are two types of terms in eqs.(80): (1)
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τ̃ψi and ũψi S which are both of order h−2/3 → ∞; and (2), the rest of the terms,
which are of order of one. In the limit h → 0 the diverging terms must balance
each other:

τ̃ψi ∼ ũ
(
kψ2

1 + (m − k)ψ2
2 − mψ2

3

)
ψi (82)

This condition is consistent with the requirement that both k and m are of the order
of kc(h), eq. (72).

Substituting these estimates into eqs.(77), (78), for the energy of the instanton
in its critical configuration we get

E (cr ) ∼ τ 2

ugD/6
h−D/3 (83)

Thus, with the exponential accuracy, the field dependent non-analytic part of the
free energy has the following explicit form

δFG(h) ∼ e−E (cr ) ∼ exp

(
−(const)

τ 2

ugD/6
h−D/3

)
(84)

which perfectly agree with the mean-field “hand-waving” estimate, eq. (16). It
has to be noted, however, that in deriving the above result we have neglected the
effects of the critical fluctuations, which is justified only if we consider the system
at temperatures not too close to the critical point, τ � τg = τ 2/(4−D). In the close
vicinity of Tc, at τ � τg , the situation becomes much more complicated: here one
would have to combine the systematic (renormalization-group) integration over
fluctuation with the background instanton solutions.

5. CONCLUSIONS

In this paper the systematic approach for the non-perturbative calculations in
disordered systems has been formulated (Section III). It has been demonstrated
how the proposed scheme works in the most simple but non-trivial case of weakly
disordered ferromagnetic Ising model away from its critical region. Here the non-
analytic (as the functions of the disorder parameter and the external magnetic field)
contributions to the free energy has been derived, eqs.(62), (84), and it has been
demonstrated that in terms of the replica field theory such contributions appear due
to instanton-like excitations. Of course, it is hardly possible to register the presence
of these exponentially small parts of the free energy both in real and in numerical
experiments, and in this sense the present results has mostly pure theoretical inter-
est. On the other hand, thinking about the others much more complicated problems
of the statistical mechanics of disordered systems, the investigations made in this
paper look rather promising. In particular, it does not look completely unrealistic
to try to combine the present non-perturbative scheme with the renormalization-
group treatment of the critical fluctuations, to settle down recent suspicion (18) that
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non-perturbative degrees of freedom could be quite relevant in the vicinity of the
critical point, so that the nature of the phase transition in random ferromagnetic
systems may appear to be not as simple as it was thought in early days of the
theory of the critical phenomena in disordered materials. (12)
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16. M. Mézard, G. Parisi, and M. A. Virasoro, Spin glass theory and beyond (World Scientific,

Singapore, 1987).
17. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Clarendon Press (Oxford 1989,

third ed. 1996).
18. Vik. S. Dotsenko, B. Harris, D. Sherrington and R. Stinchcombe, J. Phys. A28, 3093 (1995); Vik.

S. Dotsenko, Vl. S. Dotsenko, M. Picco and P. Pujol, Europhys. Lett. 32(5), 425 (1995); G. Tarjus
and Vik. S. Dotsenko, J. Phys. A35, 1627 (2002).


